The Photochemical Behaviour of 2-Methylcyclohept-2-enones

Luiz Claudio de Almeida Barbosa, John Mann* and (in part) W. Jonathan Cummins Department of Chemistry, Reading University, Whiteknights, Reading RG6 2AD, UK

Abstract

An efficient dimerisation of 1,3-dimethyl-8-oxabicyclo[5.3.0]dec-3-ene-2,9-dione 4 has been discovered, and probably involves an initial photo-induced formation of the trans cyclohept-2-enone which then undergoes thermal dimerisation. Irradiation of the complex cycloheptenone, 1,3,10-trimethyl-8-oxabicyclo[5.3.0] dec-3-ene-2,9-dione 1 provided an 85% yield of a novel tricycle (and no dimer), tentatively identified as 1,8,10-trimethyl-3-oxatricyclo[6.2.0.0 ${ }^{4,10}$]decane-2,9-dione.

During the development of a new route to the pseudoguaianolide skeleton, ${ }^{1}$ we irradiated $1,3,10$-trimethyl-8-oxabicyclo[5.3.0]-dec-3-ene-2,9-dione 1 in the presence of an excess of 2-tri-methylsiloxybuta-1,3-diene (DME as solvent), and obtained two major products: the desired [$2+2$] cycloaddition product 2 (9%, mixture of stereoisomers), and the tricycle 3 (27%, tentative structure-vide infra) (Scheme 1). A change of solvent

3
Scheme 1.
to acetonitrile improved the yields of both products, and a further change to THF with elimination of the diene from the reaction mixture, resulted in an 85% isolated yield of tricycle 3.

For these reactions, a relatively inefficient irradiation protocol was employed. This involved the use of two 500 W medium pressure mercury lamps placed externally to the Pyrex reaction vessel. In contrast, if we used a more efficient irradiation apparatus involving one 125 W lamp surrounded by the reaction mixture (immersion lamp), the tricycle 3 was the sole product (54% isolated yield) even in the presence of the diene. This suggested that the cycloadduct 2 was undergoing cycloreversion under the more forcing irradiation conditions, and this was shown to be the case. With the same irradiation protocol, the related cycloheptenone 4 (demethyl analogue of 1) yielded the novel dimer 5 (Fig. 1) (50% isolated yield) and other stereoisomers (10%), but no trace of a tricycle analogous to 3 .

All of these irradiations were carried out on at least 0.5 g , and yields were reproducible. A summary of all of the results is shown in Table 1.

Compound 3 has so far not undergone X-ray structure elucidation, but the structure assigned appears reasonable on

5
Fig. 1.
(a)

(b)

Fig. 2. NMR data for compound 3: (a), NOE data; (b), major coupling constants in ${ }^{1} \mathrm{H}$-COSY spectrum, $=$ geminal and \longleftrightarrow vicinal coupling.
the basis of the spectral data summarised in Fig. 2. In particular, the ${ }^{13} \mathrm{C}$ NMR revealed the presence of three methyl groups (all singlets in the ${ }^{1} \mathrm{H}$ spectrum), three CH_{2} groups, one CH , three quaternary carbons and two carbonyls. The 2D-COSY and NOE data were also consistent with the assigned structure. Finally, the formation of this tricyclic structure is also in accord with the likely mechanism of its formation via the triplet biradical 6, which involves intramolecular abstraction of the tertiary hydrogen adjacent to the lactone carbonyl group. In compound 4 this hydrogen is secondary, and the biradical may be less stable, thus allowing the possibility of an alternative reaction pathway.

Table 1. Reaction of compounds 1 and 4

Lamp source	Reactant	Amount of diene (mol equiv.)	Product	Solvent	Yield (\%)
External ${ }^{\text {a }}$	1	4.4	2	DME	9
			3	DME	27
	1	7.0	2	MeCN	22
			3	MeCN	61
	1	0	2	THF	0
			3	THF	85
	4	12	8	cyclohexane	45
	4	0	no reaction	-	-
Immersion ${ }^{\text {b }}$	1	0			54
	4	0	5	THF	50
	4	0	other isomers	THF	10

${ }^{a}$ Typical irradiations $7 \mathrm{~h} .{ }^{b}$ Irradiations for 7 h .

The type of photo-process envisaged for the conversion of bicycle 1 into tricycle 3, although rare, is not without precedent, and the transformations described by Agosta ${ }^{2}$ and Herz ${ }^{3}$ (Scheme 2) have some similarity to the present reaction.
(a)

(b)

Scheme 2. (a), see ref. 2; (b), see ref. 3.
The formation of the dimer 5 can best be explained as proceeding via initial photo-induced formation of the trans cycloheptenone, followed by an intermolecular thermal ene reaction. Again, there is precedent for this kind of process, and this is best exemplified by the reaction shown in Scheme $3 .{ }^{4}$

Scheme 3.
Interestingly, this kind of chemical transformation has never been observed with cyclohexenones, and this probably reflects the greater stability of the intermediate trans cycloheptenones. The presence of the extra methyl group in compound 1 may render this molecule too rigid to allow access to the trans form, thus increasing the chances of it reacting via the biradical 6 .

In order to demonstrate the generality of this dimerisation,
we irradiated 2-methylcyclohept-2-enone using the immersion lamp (ca. $20 \mathrm{~h}, \mathrm{THF}$) and obtained the dimers 7 (ca. 5% yield of

$7 a$

7b
a $1: 1$ mixture of stereoisomers), with 90% recovery of starting ketone. When the reaction was carried out in the presence of 2-trimethylsiloxybutadiene, no [2 +2] cycloaddition product was obtained, but the yield of the dimers 7 was increased to 57% (with 20% recovery of starting material after 12 h irradiation). This can perhaps be explained if one invokes the intermediacy of an exciplex which is more easily attained in the presence of the diene.

In summary, we have discovered a practical method for the construction of functionalised biscycloheptanones. These structures are not without interest due to the significant biological activity exhibited by α-methylene ketones and lactones. ${ }^{5}$

Experimental

IR spectra were recorded with a Perkin-Elmer 881 double beam grating spectrophotometer. NMR spectra were recorded with a Perkin-Elmer R34 (220 MHz) instrument, a Bruker WH 400 spectrometer (400 MHz) at the University of Warwick or with a Varian T-60 $(60 \mathrm{MHz})$ instrument, using tetramethylsilane as internal standard. Mass spectra were obtained at the University of Swansea using a VG ZAB-E high resolution mass spectrometer. Flash chromatography was performed using Crosfield Sorbsil C60 ($40-60 \mathrm{~m}$). Solvents were purified according to Perrin, ${ }^{6}$ and light petroleum refers to the fraction with b.p. $40-60^{\circ} \mathrm{C}$, ether refers to diethyl ether.

7,8,10-Trimethyl-11-trimethylsiloxy-11-vinyl-5-oxatricyclo[8.2.0.0 $0^{4,8}$]dodecane-6,9-dione 2 and 1,8,10-Trimethyl-3-oxatricyclo $\left[6.2 .0 .0^{4,10}\right]$ decane-2,9-dione 3.-A solution of $1,3,10-$ trimethyl-8-oxabicyclo[5.3.0]dec-3-ene-2,9-dione $1(0.33 \mathrm{~g}, 1.6$ mmol) and 2-trimethylsiloxybuta-1,3-diene ($1.0 \mathrm{~g}, 7.02 \mathrm{mmol}$) in dry dimethoxyethane (DME, 50 ml) contained in a Pyrex irradiation vessel, was degassed using nitrogen. It was then irradiated for 10 h with two 500 W medium pressure mercury
lamps, with the temperature maintained at $20^{\circ} \mathrm{C}$. After removal of the solvent, the white residue was chromatographed using light petroleum-ether ($1: 1$) as eluant to yield the two tricyclic compounds 2 ($50 \mathrm{mg}, 9 \%$ yield) and $3(89 \mathrm{mg}, 27 \%$).

Compound 2. M.p. $150^{\circ} \mathrm{C}$ (decomp.); $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ 3017, 2956, 2870, 1767 (lactone), 1691 (ketone), 1604 ($\mathrm{C}=\mathrm{C}$), $1457,1251,1027,931$ and $841 ; \delta\left(\mathrm{CDCl}_{3} ; 220 \mathrm{MHz}\right) 0.10(\mathrm{~s}$, $\left.\mathrm{SiMe}_{3}\right), 1.18$ and $1.37(2 \times \mathrm{s}, 2 \times \mathrm{Me}), 1.28(\mathrm{~d}, J 6.6 \mathrm{~Hz}$, $7-\mathrm{Me}), 1.50-2.50(\mathrm{~m}, 1-\mathrm{H}, 2 \times 2-\mathrm{H}, 2 \times 3-\mathrm{H}, 2 \times 12-\mathrm{H}), 2.68$ (q, $J 6.6 \mathrm{~Hz}, 7-\mathrm{H}$), 4.45 (dd, $J 10.5$ and $4 \mathrm{~Hz}, 4-\mathrm{H}$), 5.18 (dd, J_{BA} 10.5 and $J_{\mathrm{BC}} 1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}$), 5.28 (dd, $J_{\mathrm{CA}} 17$ and $J_{\mathrm{CB}} 1 \mathrm{~Hz}, \mathrm{H}_{\mathrm{C}}$) and 5.98 (dd, $J_{\mathrm{AC}} 17$ and $J_{\mathrm{AB}} 10.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$) (Found: $M, 350.1913$. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}$ requires $M, 350.1913$).

Compound 3. M.p. $150^{\circ} \mathrm{C}$ (decomp.); $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ 3020, 2969, 1760 (lactone and ketone), 1148,$1085 ; \delta\left(\mathrm{CDCl}_{3}\right.$; $400 \mathrm{MHz}) 1.10(\mathrm{~s}, 10-\mathrm{Me}), 1.18$ (s, 1-Me), 1.20 (s, $8-\mathrm{Me}$), $1.61-$ $1.76(\mathrm{~m}, 5-\mathrm{H}, 6-\mathrm{H}, 7-\mathrm{H}), 1.81-1.88\left(\mathrm{~m}, 7^{\prime}-\mathrm{H}\right), 1.90-2.04\left(\mathrm{~m}, 6^{\prime}-\mathrm{H}\right)$, 2.12-2.19 (m, $\left.5^{\prime}-\mathrm{H}\right)$ and $4.45\left(\mathrm{~d}, J_{45} 6.2 \mathrm{~Hz}, 4-\mathrm{H}\right) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right.$; $22.5 \mathrm{MHz}) 12.8(\mathrm{q}), 13.0(\mathrm{q}), 17.4(\mathrm{t}), 18.6(\mathrm{q}), 29.8(\mathrm{t}), 31.0(\mathrm{t})$, 46.5 (s), 70.7 (s), 73.1 (s), 79.6 (d, C-4), 179.3 (s, ester $\mathrm{C}=\mathrm{O}$) and 207.8 (s, ketone $\mathrm{C}=\mathrm{O}$) (Found: C, 69.10; H, 7.85. Calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C}, 69.21 ; \mathrm{H}, 7.75 \%$). An improved yield of compound 3 was obtained by irradiating a solution of bicycle $1(0.5 \mathrm{~g}, 2.38$ mmole) in dry THF (200 ml) in a Pyrex irradiation vessel with a 125 W medium pressure immersion lamp. After 7 h , TLC analysis revealed that compound 1 had been consumed, and after chromatography using ether as eluant, compound 3 was obtained as the sole product $(0.27 \mathrm{~g}, 54 \%)$.

4-(1', 3^{\prime}-Dimethyl-2,9-dioxa-8'-oxabicyclo[5.3.0]decan-4-yl-1-methyl-3-methylene-8-oxabicyclo[5.3.0]decane-2,9-dione 5.-A solution of 1,3-dimethyl-8-oxabicyclo[5.3.0]dec-3-ene-2,9-dione $4(0.3 \mathrm{~g}, 1.55 \mathrm{mmol})$ in dry THF (200 ml) in a Pyrex irradiation vessel was degassed using nitrogen prior to irradiation with a 125 W medium pressure immersion lamp. After 7 h reaction was complete, and chromatography using ethyl acetate-light petroleum $[(1: 1)$ then (2:1)] yielded an isomeric mixture of dimers $(0.195 \mathrm{~g}, 65 \%)$. Recrystallisation of this mixture yielded one isomer 5 (50% yield) with around 95% purity (as judged by NMR). It was not possible to free this compound from traces of other photo-products, m.p. 245$252{ }^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3021,2939,2874,1781$ (lactone), 1702 (ketone), 1693 (unsaturated ketone), 1604 ($\mathrm{C}=\mathrm{C}$), 1452, $1189,1092,911$ and $682 ; \delta\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right.$ see Fig. 1 for numbering system) $1.15\left(\mathrm{~d}, J 7.1,3^{\prime}-\mathrm{Me}\right), 1.25-1.35\left(\mathrm{~m}, \mathrm{H}_{\mathrm{s}}\right), 1.43$ $\left(\mathrm{s}, 1^{\prime}-\mathrm{Me}\right), 1.49(\mathrm{~s}, 1-\mathrm{Me}), 1.60-1.70\left(\mathrm{~m}_{\mathrm{H}}, \mathrm{H}_{g}, \mathrm{H}_{r}\right), 1.85-2.00\left(\mathrm{~m}, \mathrm{H}_{l}\right.$, $\left.\mathrm{H}_{m}, \mathrm{H}_{n}, \mathrm{H}_{o}, \mathrm{H}_{\mathrm{p}}\right), 2.02-2.10\left(\mathrm{~m}, \mathrm{H}_{k}\right), 2.16-2.22\left(\mathrm{~m}, \mathrm{H}_{j}\right), 2.26\left(\mathrm{~d}, J_{i e}\right.$ $\left.18.6 \mathrm{~Hz}, \mathrm{H}_{i}\right), 2.38\left(\mathrm{~d}, J_{h f} 17.9 \mathrm{~Hz}, \mathrm{H}_{h}\right), 2.77\left(\mathrm{dq}, J_{g \mathrm{Mc}} 7.1\right.$ and $J_{g \mathrm{k}}$ $\left.3.1 \mathrm{~Hz}, \mathrm{H}_{g}\right), 3.23\left(\mathrm{~d}, J_{f h}, 17.9 \mathrm{~Hz}, \mathrm{H}_{f}\right), 3.30\left(\mathrm{~d}, J_{e i} 18.6 \mathrm{~Hz}, \mathrm{H}_{e}\right)$,
4.34 (dd, $J_{d o} 7.3$ and $J_{d l} 2.7 \mathrm{~Hz}, \mathrm{H}_{d}$), 4.43 (dd, $J_{c s} 11.9$ and $J_{c m} 1.6$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{c}}\right), 5.19\left(\mathrm{~s}, \mathrm{H}_{b}\right)$ and $5.22\left(\mathrm{~s}, \mathrm{H}_{a}\right)\left(\mathrm{M}, 389.1892 . \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{6}\right.$ requires 389.1963).

3-(2'-Methyl-3'-oxocycloheptyl)-2-methylenecycloheptanones 7.-A degassed solution of 2-methylcyclohept-2-enone (0.74 g , 6 mmol) and 2-trimethylsiloxybuta-1,3-diene ($4.27 \mathrm{~g}, 30 \mathrm{mmol}$) in dry THF was irradiated in a Pyrex vessel using a 125 W medium pressure immersion lamp. Reaction was incomplete after 12 h , and chromatography using light petroleum-ether (4:1) as eluant yielded a white crystalline product $7 \mathrm{a}(0.215 \mathrm{~g}$, 29%), a colourless oily product $7 \mathrm{~b}(0.205 \mathrm{~g}, 28 \%$) and recovered starting material ($0.144 \mathrm{~g}, 19 \%$), data for 7a: m.p. $90-92^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3025,3014,2932,2861,1693(2 \times \mathrm{C}=\mathrm{O})$, $1608(\mathrm{C}=\mathrm{O}), 1451,1233,1167,720$ and $662 ; \delta\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right)$ 1.06 (d, J $7.0 \mathrm{~Hz}, \mathrm{Me}$), $1.09-1.13$ (m, H-4' ${ }_{\alpha}$), 1.21-1.33 (m, H-5 ${ }^{\prime}{ }_{\alpha}$), 1.45-1.85 (m, H-4 ${ }_{\mathrm{B}}, \mathrm{H}-5^{\prime}{ }_{\mathrm{\beta}}, 6^{\prime}-\mathrm{CH}_{2}, 4-\mathrm{CH}_{2}, 5-\mathrm{CH}_{2}, 6-\mathrm{CH}_{2}$), 2.61-2.74 (m, H-2, $\left.7^{\prime}-\mathrm{CH}_{2}, 7-\mathrm{CH}_{2}\right), 5.19\left(\mathrm{~d}, J 1.5 \mathrm{~Hz}, \mathrm{H}_{b}\right), 5.74$ (d, $J 1.5 \mathrm{~Hz}, \mathrm{H}_{a}$); (Found: C, $77.35 ; \mathrm{H}, 9.80 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}$ requires C, $77.4 ; \mathrm{H}, 9.75 \%$). Data for 7b: $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3089,2931$, 2861, $1695(2 \times \mathrm{C}=\mathrm{O}), 1607(\mathrm{C}=\mathrm{C}), 1414,1110,937$ and 893; $\delta\left(\mathrm{CDCl}_{3} ; 400 \mathrm{MHz}\right) 0.93(\mathrm{~d}, J 7.0 \mathrm{~Hz}, \mathrm{Me}), 1.16-1.94\left(\mathrm{~m}, 4-\mathrm{CH}_{2}\right.$, $5-\mathrm{CH}_{2}, 6-\mathrm{CH}_{2}, 4^{\prime}-\mathrm{CH}_{2}, 5^{\prime}-\mathrm{CH}_{2}, 6^{\prime}-\mathrm{CH}_{2}$), 2.27-2.45 (m, H-2' ${ }_{x}$, $\mathrm{H}^{-7}{ }_{\mathrm{B}}{ }^{\prime}, \mathrm{H}-3, \mathrm{H}-3^{\prime}$), 2.50 (ddd, J 18.60, 10.5 and $2.45 \mathrm{~Hz}, \mathrm{H}-7_{\alpha}$), 2.62-2.76 (m, H-7 ${ }_{\alpha}, \mathrm{H}^{2} 7_{\mathrm{\beta}}$), $5.19\left(\mathrm{~d}, 1.6 \mathrm{~Hz}, \mathrm{H}_{b}\right)$ and $5.79(\mathrm{~d}, J 1.6$ $\left.\mathrm{Hz}, \mathrm{H}_{a}\right) ;\left(M, 266.2120 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}\right.$ requires 266.2120).

Acknowledgements

We thank the CNPq, Brazil, and the SERC for Ph.D studentships; and Dr. Andrew Gilbert for advice on photochemistry.

References

1 L-C. de Almeida Barbosa and J. Mann, J. Chem. Soc., Perkin Trans. 1, 1990, 177.
2 W. C. Agosta, W. L. Schreiber, A. B. Smith III and S. Wolff, J. Am. Chem. Soc., 1972, 94, 7797.
3 W. Herz, V. S. Iyer, M. G. Nair and J. Saltiel, J. Am. Chem. Soc., 1977, 99, 2704.
4 G. Koltzenburg and K. Kraft, Tetrahedron. Lett., 1967, 4723.
5 E. Costa and A. Guidotti, Ann. Rev. Pharm. Toxicol., 1979, 19, 531.
6 D. D. Perrin and W. L. Armarego, Purification of Laboratory Chemicals, 3rd edn., 1988, Pergamon.

Paper 0/02832K
Received 25th June 1990
Accepted 23rd July 1990

